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Abstract. Magnetic relaxation measurements were carried out by magneto-optical Kerr effect on exchange
biased (Pt/Co)5/Pt/FeMn multilayers with perpendicular anisotropy. In these films the coercivity and
the exchange bias field vary with Pt spacer thickness, and have a maximum for 0.2 nm. Hysteresis loops
do not reveal important differences between the reversal for ascending and descending fields. Relaxation
measurements were fitted using Fatuzzo’s model, which assumes that reversal occurs by domain nucleation
and domain wall propagation. For 2 nm thick Pt spacer (no exchange bias) the reversal is dominated
by domain wall propagation starting from a few nucleation centers. For 0.2 nm Pt spacer (maximum
exchange bias) the reversal is strongly dominated by nucleation, and no differences between the behaviour
of the ascending and descending branches can be observed. For 0.4 nm Pt spacer (weaker exchange bias)
the nucleation density becomes less important, and the measurements reveal a much stronger density of
nucleation centers in the descending branch.

PACS. 75.60.Jk Magnetization reversal mechanisms – 75.60.Lr Magnetic aftereffects – 75.70.Cn Magnetic
properties of interfaces

1 Introduction

Exchange-biased thin layer systems in which an antiferro-
magnet (AF) is in contact with a ferromagnet (FM) are
still widely studied both for fundamental reasons and for
their applications in spin-electronics devices. In these sys-
tems a unidirectional anisotropy is induced by field cool-
ing (FC) the bilayer system through the Néel temperature
of the AF. This leads to an increase of the coercivity of
the FM layer and to a shift of the hysteresis loop, by the
exchange bias field EB , usually in the direction opposite
to the cooling field. This effect is used in spin electronic
devices to pin the magnetisation of the reference FM layer
of a spin valve or a tunnel junction. The complicated mi-
croscopic phenomena leading to exchange bias have been
studied for more than 40 years, since the discovery of the
effect by Meiklejohn and Bean [1]. A review of the main
microscopic models proposed to explain exchange bias can
be found in references [2–4]. In order to correctly pre-
dict exchange bias fields and coercivity, the details of the
FM/AF interface and the dynamics of the interface spins,
frustrated by the competing interactions, should be taken
into account. Models taking into account domain walls in
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the AF and in the FM [5–7] and surface roughness and
defects [8] predict the right order of magnitude for EB.

The presence of unidirectional interfacial FM/AF ex-
change interaction implies that the details of magnetisa-
tion processes in exchange biased films are different from
those found for ‘free’ magnetic layers. Kuch et al. [9] have
clearly shown that the domain structure of cobalt grown
on monocristalline FeMn films is strongly modified with
respect to that of a free film. In particular the Co domains
become much smaller and irregular. Quasi-static and dy-
namic magnetisation reversal in exchange biased films
have been studied by several groups. Dynamic coercivity,
viscosity and spin dynamics in exchange biased systems
have been treated by Stamps [10,11]. Thermal relaxation
effects [12] and dynamic reversal [13–15] in Co/NiO films
have been investigated by magneto-optical and transport
methods. Thermally activated reversal in the AF layer
has been widely studied by O’Grady group [16]. Differ-
ent mechanisms of magnetisation reversal of the FM layer
for fields applied against and with EB direction, show-
ing up as asymmetric hysteresis loops, have been pre-
dicted theoretically [17] and observed by several groups
for exchange biased systems with in-plane magnetisa-
tion [18–21]. Gierlings et al. [20] deduced from polarised
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neutron reflectometry data on Co/CoO systems that mag-
netisation reversal in the descending branch (where the
field is applied against the exchange bias direction) is due
to nucleation and domain wall propagation, while the re-
versal in the ascending branch was interpreted as due to
coherent rotation. Kerr microscopy data on CoFe/IrMn
and Co/NiO [18,19] showed that the magnetisation rever-
sal involves nucleation and propagation in both branches.
The volume of the sample reversing by nucleation or do-
main wall (DW) propagation is not the same for the two
branches and the ratio between them depends on the angle
between the applied field and the exchange bias direction.

In this paper we study the magnetisation rever-
sal in exchange biased multilayers with perpendicular
anisotropy in both ascending and descending fields. These
systems are important from an application viewpoint as
they are promising as ultra high density magnetic record-
ing media [22,23] or as storage element in high den-
sity Magnetic Random Access Memory. Only a few in-
vestigations of perpendicular exchange biased systems,
in general (Pt/Co) multilayers, are found in the liter-
ature [24–33]. Unbiased M/Co/M trilayers and multi-
layers with M = Pt, Pd and Au have been studied
to clarify the origin of perpendicular anisotropy and
its relation to enhanced interfacial orbital moments and
anisotropies [34,35]. Magnetisation dynamics in Pt/Co/Pt
and Au/Co/Au trilayers has been widely investigated by
Ferré et al. by Kerr microscopy [36]. The variation of the
domain structure with the amplitude of the applied field
has been recently studied by Woodward et al. [37].

In a previous paper [29] we have reported the study of
the dynamic coercivity of a series of (Pt/Co)4/FeMn mul-
tilayers. Magneto-optical Kerr measurements suggested
that for low sweep rates of the applied field the rever-
sal of the (Pt/Co)4 magnetisation was initiated by the
nucleation of reversed domains but dominated by propa-
gation of domain walls. Although other measurements on
(Pt/Co) multilayers did not show a difference in the rever-
sal mechanism in the ascending and descending branches
of the hysteresis loops [25] our fits of the HC vs. dH/dt
curves revealed a difference in the reversal mode of the two
branches. The Barkhausen volume associated to the rever-
sal in the descending branch (against the exchange bias
direction) was found to be smaller than the one for the
ascending branch. This suggested that the density of pin-
ning centers hindering the domain wall motion was larger
for the descending branch than for the ascending branch.

In this paper we present magnetisation relaxation mea-
surements on exchange biased (Pt/Co)5/Pt/FeMn multi-
layers, in which a thin Pt spacer is grown between the
last Co and the FeMn layers. The effect of the Pt spacer
on the magnetic properties of the multilayer has been re-
ported by Garcia et al. [31]. The presence of a thin Pt
spacer in contact with FeMn increases the effective per-
pendicular anisotropy of the topmost Co layer and leads
to an increase of the exchange bias field and coercivity.

Our measurements reveal that the mechanisms leading
to magnetisation reversal strongly depend on the thickness
of the Pt spacer. As already observed for Pt/Co/Pt tri-

layers [36], domain wall propagation dominates the mag-
netisation reversal of unbiased samples which in our case
correspond to samples with thick Pt spacers. For thin Pt
spacers, and in the presence of exchange bias, the rever-
sal is instead dominated by domain nucleation and an
asymmetry is observed between the reversal in the two
branches of the hysteresis loop for a sample with moder-
ate exchange bias.

2 Experimental methods and analysis

We carried out measurements on (Pt(2nm)/Co(0.4nm))5/
Pt(t)/FeMn(13nm) multilayers with t = 0, 0.2, 0.4, 0.7
and 2 nm. Multilayer samples were deposited on ther-
mally oxidised Si wafers by dc magnetron sputtering and
capped with 2 nm of Pt. They are polycrystalline with a
weak (111) texture. The samples were field cooled from
150 ◦C, above the blocking temperature, under a field of
0.25 T applied perpendicular to the film plane. The de-
tails of sample preparation and magnetic properties are
presented in references [29,31]. Samples show perpendic-
ular exchange bias field EB , enhanced coercivity HC , and
a perpendicular magnetic anisotropy which depend on the
Pt spacer thickness (Fig. 1). The anisotropy energies mea-
sured with a vibrating sample magnetometer (VSM) were
deduced from the value of the saturation magnetisation
obtained by applying a magnetic field in the plane of the
layers.

Hysteresis loops of the multilayer samples were mea-
sured at room temperature using polar Kerr effect. Relax-
ation measurements were carried out in the following way.
The sample magnetisation was first saturated to +MS by
applying a strong field out of the plane of the sample. At
a time t = 0 an opposite field H < HC , close to the quasi-
static coercivity, was applied. While the magnetisation re-
laxes from +MS to −MS , the temporal variation M(t)
of the magnetisation with constant applied field is mea-
sured by Kerr effect. This is done for the two branches of
the hysteresis cycle, and for several applied field ampli-
tudes giving relaxation times between some milliseconds
and some seconds.

The shapes of the M(t) curves can be understood in
the light of the theory developed by Fatuzzo [38] which
was applied for the first time to magnetic materials by
Labrune et al. [39]. The reversal is assumed to be ther-
mally activated and to occur first by random nucleation,
according to a statistical process having probability R per
unit time:

N = N0(1 − exp(−Rt)) (1)
where N is the total number of nuclei at time t and N0

the total number of nucleation sites.
Each circular domain of initial radius rc is assumed to

grow with a constant radial velocity v. It can be shown
that the fractional area B(t) whose magnetisation has not
reversed at time t is given by:

B(t) = exp
[
− 2k2

(
1 − (Rt + k−1) + 1

2 (Rt + k−1)2

− exp(−Rt)(1 − k−1) − 1
2k−2(1 − Rt)

)]
(2)
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Fig. 1. Values of exchange bias field (a), coercivity (b) and
anisotropy energy (c) as a function of Pt spacer thickness, for
the (Pt/Co)5/Pt(t)/FeMn multilayers. The line is a guide for
the eye.

where k = v/Rrc. The shape of the relaxation curve then
depends only on the parameter k which expresses the rela-
tive weight of the sample volume reversed by propagation
and nucleation. When domain wall propagation dominates
(for k � 1), equation (2) can be reduced to:

B(t) � exp
(−k2R3t3/3

)
(3)

and it gives rise to a S-shaped variation of the magnetisa-
tion. When nucleation governs magnetisation reversal, for
small values of k (k � 1), then

B(t) � exp(−Rt) (4)

and the magnetisation has an exponential decay.
Note that one of the limitations of Fatuzzo’s model

is that it considers the existence of only one energy bar-
rier for each reversal process (Ep and En associated with
domain wall propagation and nucleation mechanisms).

3 Results and discussion

The hysteresis loops measured for the multilayer samples
show that: i) the exchange bias field and the coercivity
strongly depend on Pt spacer thickness and ii) no clear
differences are present between the shapes of the descend-
ing and ascending branches.

As shown in Figure 1 the coercivity and the exchange
bias field increase for thin Pt spacer, pass through a max-
imum for about 0.2 nm of Pt and decrease for thicker
Pt spacer where EB becomes zero. Garcia et al. [31] at-
tributed the increase of EB and HC , obtained with thin
Pt spacers, to the increase of the perpendicular compo-
nent of the magnetisation of the topmost Co layer and,
through the exchange interaction between different Co lay-
ers, to the increase of the perpendicular anisotropy of the

whole multilayer. The perpendicular anisotropy strongly
increases for small Pt spacer thickness, then saturates
for about 0.7 nm Pt. The increase of the perpendicular
anisotropy is also reflected by the shape of the hysteresis
curves. For thin Pt spacers the cycles are tilted – signa-
ture of an in-plane magnetisation component – while for
0.7 nm and 2 nm of Pt the curves are practically square.

The increase of the coercivity HC and of the exchange
bias field EB [31] can then be explained. When the Co mo-
ments are better aligned along the out-of-plane direc-
tion, their projection along the AF moments direction in-
creases, since at their turn these moments are on average
aligned along the easy axis closest to the (perpendicular)
FC direction. The presence of a maximum in EB and HC

followed by an exponential decrease is due to the compe-
tition between two effects: i) the anisotropy of the Co lay-
ers which increases with Pt thickness and ii) the short
range FM-AF interaction that, for a non magnetic spacer,
induces an exponential decay of coercivity and exchange
bias [31].

The relaxation measurements for the three multilayer
samples with Pt spacer thickness t = 2, 0.4 and 0.2 nm,
called from now on samples I, II and III, are shown in
Figure 2 together with the corresponding hysteresis loops.
After saturation of the sample in the positive (negative)
direction, a magnetic field H of opposite direction and
amplitude close to the coercive field in the descending
(ascending) branches is applied at time t = 0. The time
dependence of the magnetisation is measured for several
values of H . The M(t) curves have different shapes for
the three samples, revealing that the reversal occurs by
different mechanisms depending on the Pt layer thickness.
Qualitatively, according to Fatuzzo’s model, the S-shaped
curve obtained for sample I (t = 2 nm and EB = 0)
indicates that the reversal is dominated by domain wall
propagation. On the other hand, for samples II and III,
which exhibit exchange bias, the M(t) curves have a much
more exponential decay, revealing that nucleation domi-
nates the reversal. Note also that a difference between the
shape of the relaxation curves measured for applied fields
in the descending and ascending branches is clearly visible
for sample II.

For sample I (EB = 0) the fit of the relaxation curve
to the expression (2) gives k values around 100 (Fig. 3).
This confirms that magnetisation reversal proceeds essen-
tially by propagation of domain walls starting from a few
reversed domains. The quality of the fit suggests that only
one energy barrier (or a narrow distribution of energy
barriers) is associated to the thermally activated process.
The relaxation curves measured for the various magnetic
field amplitudes and plotted as a function of the reduced
time t/t1/2 (where t1/2 is the time for which the magneti-
sation decreases to 50% of its saturation value) can all be
superposed. This shows that for this sample and within
the range of fields used here, the k value deduced from
Fatuzzo’s model, and therefore the ratio between domain
wall propagation and nucleation reversal mechanisms, is
sensitively independent of the field. This also means that v
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Fig. 2. Normalised hysteresis cycles (left curves) and as-
sociated magnetisation relaxation measurements M(t) (right
curves) measured for the three (Pt/Co)5/Pt(t)/FeMn with Pt
spacer thickness t = 2 nm Pt (sample I – top), 0.4 nm Pt
(sample II – middle) and 0.2 nm Pt (sample III – bottom).
The hysteresis loops were measured with a field sweep rate
of 50 mT/s. The relaxation curves were measured starting
from positive (negative) saturation and for several opposite
fields close to the coercive field of the descending (ascending)
branches. These are shown respectively in the top (bottom)
panel beside the corresponding hysteresis loops.

and R show the same exponential variation with applied
field.

To confirm the validity of our interpretation of the re-
laxation curves within Fatuzzo’s model, in Figure 4 we
present the results of time-dependent Kerr microscopy
measurements obtained for a sample similar to sample I, a
(Pt/Co)4 multilayer grown without FeMn overlayer. The
magnetisation reversal in the two samples is expected to
be similar, since we have seen that the 2 nm thick Pt
spacer in sample I cancels the effects of the AF/FM inter-
action. As for the macroscopic relaxation measurements,
the sample was saturated in the positive direction, and at
time t = 0 a negative magnetic field was applied. Kerr
images were then acquired for several times between t = 0
and the time where negative saturation is obtained. For

Fig. 3. Relaxation measurements (symbols) measured for sam-
ples I (top), II (middle) and III (bottom) for the descending
(a, b, c) and ascending (a’, b’, c’) branches of the hysteresis
loops. Full lines represent the fits using Fatuzzo’s model (2).
The dotted lines are the fits considering the presence of two
energy barriers.

Fig. 4. Relaxation curve and corresponding domain structure
measured for a (Pt/Co)4 multilayer without antiferromagnet.
The S-shaped relaxation curve is typical of reversal dominated
by domain wall propagation. The Kerr microscopy images con-
firm that the reversal proceeds by nucleation of a few domains,
followed by propagation of their domain walls.

this sample the fit of the relaxation curve with Fatuzzo’s
model gave k = 10 which indicates that propagation of
domain walls dominates the reversal. Kerr images con-
firm that only a few domains nucleate within the micro-
scope field of view (250 µm× 250 µm) and propagation of
domain walls leads to negative saturation. Images of the
magnetic domain structure of sample I could not be ob-
tained with Kerr microscopy because of the 13 nm thick
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FeMn overlayer which strongly reduced the signal. Since
a value of k = 100 was found from relaxation measure-
ments, we expect for sample I even less nucleation sites
than for the (Pt/Co)4 multilayer.

For the exchange biased samples II and III, the relax-
ation curves could not be fitted over the whole timescale
using Fatuzzo’s expression (i.e. considering a single en-
ergy barrier for the thermally activated process) since for
long relaxation times the magnetisation varies more slowly
than predicted within this model (see Fig. 3).

The experimental curves could only be fitted correctly
when at least two energy barriers were considered, one
corresponding to the fast reversal described by Fatuzzo’s
model and one associated with the slower reversal of the
last 20–30% of the samples magnetisation.

The results of the fits using one or two energy barriers
are presented in Figure 3. For sample III the fast decay
of the magnetisation, for both hysteresis branches, could
be fitted using an exponential B(t) curve with k = 0.
This confirms that in this sample, presenting maximum
exchange bias, the initial stages of the reversal are dom-
inated by nucleation of reversed domains. Note that for
this sample no information about a possible difference in
the reversal in the two hysteresis branches can be obtained
– for small k values (large nucleation density) the shape of
the relaxation curves depends very little on k, and differ-
ences in k values for the two branches cannot be reliably
extracted from the fits.

On the contrary, for sample II the initial stages of
the relaxation are very different for the two branches of
the hysteresis loops. In the “descending” branch (rever-
sal against EB) the relaxation is dominated by nucleation
(k � 0) while for the “ascending” branch (reversal toward
the direction of EB) propagation is more favorable and the
relaxation proceeds by the formation of a smaller number
of nucleation centers (k � 5). The results for this sample
indicate that the reduction of the exchange bias leads to a
reduction of the density of nucleation centers (larger k val-
ues). The differences in the reversal mechanisms in the two
branches then become clearly observable, since the M(t)
curves change more for larger k values. In both samples II
and III the reversal of the last 20–30% of the total mag-
netisation proceeds slower than in Fatuzzo’s model, with
a time constant which depends on the amplitude of the
applied field and which is much larger than that of the
initial decay curve. This suggest that this “hard volume”
reverses by overcoming an energy barrier which is much
larger than that associated with the initial thermally acti-
vated process. The fractional volume reversing with a long
time constant is more important for sample III (larger ex-
change bias) than for sample II, and for both samples is
larger for the descending branch, where reversal proceeds
via the formation of more nucleation centers, than for the
ascending branch. This asymmetry in the relaxation curve
can be seen for both samples.

Similar effects in the relaxation curves have been found
by Pommier et al. [40] for Au/Co/Au trilayer samples, for
which the reversal proceeded mainly by domain wall prop-
agation. In that case the slow relaxation of the magneti-

sation for long timescales was attributed to the presence
of hard magnetic centers which pinned the domain wall
motion therefore preventing a rapid reversal. The pres-
ence of hard magnetic centers may not be excluded in
our samples. However the correlation between the ‘hard’
fractional volume and the amplitude of the exchange bias
field is rather striking and suggests a different explana-
tion. As we said already, the fractional volume left un-
reversed increases with the exchange bias (it is zero for
sample I where propagation dominates and is maximum
for sample III where nucleation density is maximum) and
is larger for the descending branch, where the nucleation
dominates. This suggests that the slow decay of the re-
laxation curve in the late stages of reversal may be re-
lated to the formation of a large density of 360◦ domain
walls which may require high fields to be evacuated from
the sample. Since the volume associated to these walls
increases with the nucleation density, the relationship be-
tween unreversed volume and exchange bias may be ex-
plained.

Changes in magnetisation reversal mechanisms of
exchange biased FM layers with respect to free layers
are induced by the interaction at the FM/AF interface.
This interaction has both structural and magnetic origins.
Structural changes, like the increase of the density of de-
fects, may explain the increase of the nucleation density
(and the barrier for DW motion) observed in this study
in samples II and III with respect to sample I.

To explain the difference in reversal mechanism for the
two hysteresis branches, however, the magnetic FM/AF
interaction has to be taken into account. In this sense,
the main result of this work is the observation of a larger
number a nucleation centers in the descending branch of
the hysteresis cycle, where the field is applied opposite to
the exchange bias field.

According to Nikitenko et al. [41] the different rever-
sal for the two hysteresis branches can not be explained
for the case of an uncompensated AF spin structure, since
in this case the pinning centers for DW motion are the
same for increasing and decreasing fields. The asymmetry
is a manifestation of the inhomogeneity of the local uniax-
ial anisotropy, already postulated by Malozemoff [5]. For
field applied against the exchange bias direction the mag-
netic interface interaction acts, on average, against the
reversal leading to a higher energy barrier for DW mo-
tion and therefore favouring reversal by nucleation. Differ-
ences in the initial nucleation process in the two hysteresis
branches of (Co/Pt)50 multilayers on CoO, associated to
the presence of local regions more exchange biased than
the average, had been observed by Hellwig et al. [25]. No
differences between the reversal for the two branches were
however observed, since the latter was determined by the
strong dipolar fields characteristic of this thick multilayer
system.

It could be argued that the different nucleation density
observed for the different samples could be simply related
to their different perpendicular anisotropy. However, mea-
surements on multilayer samples presenting a thinner AF
overlayer (therefore no exchange bias) have shown that
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changes in the nucleation density related to changes in
anisotropy are at least one order of magnitude smaller
than those observed for exchange biased samples.

To conclude, we have shown for thin multilayer sam-
ples presenting perpendicular anisotropy, that the mag-
netisation reversal is strongly modified in exchange-biased
films (thin Pt spacers) with respect to the unbiased film
(large Pt spacer). Differences in the reversal of the mag-
netisation in the descending and ascending branches of the
hysteresis loops can also be observed. These differences are
not observed in the hysteresis cycles, but become evident
in relaxation curves, as soon as the nucleation rates are
not too high. Similar effects had been observed by dynamic
coercivity data in (Pt/Co)4/FeMn samples [29] without
Pt spacer and can be attributed to a distribution of the
exchange bias strength. One of the future objectives of
this work is to clarify how differences in the reversal in
the descending and ascending branches are related to the
average strength of the perpendicular anisotropy and to
the strength of the exchange bias field.

This work was partially supported by the European Commu-
nity through the RTN grant NEXBIAS.
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